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The principal result of this paper is the following Markov-type inequality for
Mu� ntz polynomials.

Theorem (Newman's Inequality on [a, b]/(0, �)). Let 4 :=(*j)
�
j=0 be an

increasing sequence of nonnegative real numbers. Suppose *0=0 and there exists a
$>0 so that *j�$j for each j. Suppose 0<a<b. Then there exists a constant
c(a, b, $) depending only on a, b, and $ so that

&P$&[a, b]�c(a, b, $) \ :

n

j=0

*j+ &P&[a, b]

for every P # Mn(4), where Mn(4) denotes the linear span of [x*0, x*1, ..., x*n]
over R.

When [a, b]=[0, 1] and with &P$&[a, b] replaced with &xP$(x)&[a, b] this was
proved by Newman. Note that the interval [0, 1] plays a special role in the study
of Mu� ntz spaces Mn(4). A linear transformation y=:x+; does not preserve mem-
bership in Mn(4) in general (unless ;=0). So the analogue of Newman's Inequality
on [a, b] for a>0 does not seem to be obtainable in any straightforward fashion
from the [0, b] case. � 1996 Academic Press, Inc.

1. Introduction and Notation

Let 4 :=(*j)
�
j=0 be a sequence of distinct real numbers. The span of

[x*0, x*1, ..., x*n]
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over R will be denoted by

Mn(4) :=span[x*0, x*1, ..., x*n].

Elements of Mn(4) are called Mu� ntz polynomials. Newman's beautiful
inequality [6] is an essentially sharp Markov-type inequality for Mn(4),
where 4 :=(*j)

�
j=0 is a sequence of distinct nonnegative real numbers. For

notational convenience, let & }&[a,b] :=& }&L�[a,b] .

Theorem 1.1 (Newman's Inequality). Let 4 :=(*j)
�
j=0 be a sequence of

distinct nonnegative real numbers. Then

2
3

:
n

j=0

*j� sup
0{P # Mn(4)

&xP$(x)&[0,1]

&P&[0, 1]

�11 :
n

j=0

*j .

Frappier [4] shows that the constant 11 in Newman's Inequality can be
replaced by 8.29. In [2], by modifying (and simplifying) Newman's
arguments, we showed that the constant 11 in the above inequality can be
replaced by 9. But more importantly, this modification allowed us to prove
the following Lp version of Newman's Inequality [2] (an L2 version of
which was proved earlier in [3]).

Theorem 1.2 (Newman's Inequality in Lp). Let p # [1, �). Let
4 :=(*j)

�
j=0 be a sequence of distinct real numbers greater than &1�p. Then

&xP$(x)&Lp[0, 1]�\1�p+12 \ :
n

j=0

(*j+1�p)++ &P&Lp[0, 1]

for every M # Mn(4) :=span[x*0, x*1, ..., x*n].

We believe on the basis of considerable computation that the best
possible constant in Newman's Inequality is 4. (We remark that an
incorrect argument exists in the literature claiming that the best possible
constant in Newman's Inequality is at least 4+- 15=7.87... .)

Conjecture (Newman's Inequality with Best Constant). Let 4 :=(*j)
�
j=0

be a sequence of distinct nonnegative real numbers. Then

&xP$(x)&[0,1]�4 \ :
n

j=0

*j+ &P&[0,1]

for every P # Mn(4) :=span[x*0, x*1, ..., x*n].

It is proved in [1] that under a growth condition, which is essential,
&xP$(x)&[0, 1] in Newman's Inequality can be replaced by &P$&[0, 1] . More
precisely, the following result holds.
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Theorem 1.3 (Newman's Inequality without the factor x). Let
4 :=(*j)

�
j=0 be a sequence of distinct real numbers with *0=0 and *j� j for

each j. Then

&P$&[0, 1]�18 \ :
n

j=0

*j+ &P&[0, 1]

for every P # Mn(4).

Note that the interval [0, 1] plays a special role in the study of Mu� ntz
polynomials. A linear transformation y=:x+; does not preserve mem-
bership in Mn(4) in general (unless ;=0), that is P # Mn(4) does not
necessarily imply that Q(x) :=P(:x+;) # Mn(4). Analogues of the above
results on [a, b], a>0, cannot be obtained by a simple transformation. We
can, however, prove the following result.

2. New Results

Theorem 2.1 (Newman's Inequality on [a, b]/(0, �)). Let 4 :=(*j)
�
j=0

be an increasing sequence of nonnegative real numbers. Suppose *0=0 and
there exists a $>0 so that *j�$j for each j. Suppose 0<a<b. Then there
exists a constant c(a, b, $) depending only on a, b, and $ so that

&P$&[a, b]�c(a, b, $) \ :
n

j=0

*j+ &P&[a, b]

for every P # Mn(4), where Mn(4) denotes the linear span of [x*0, x*1, ..., x*n]
over R.

Theorem 2.1 is sharp up to the constant c(a, b, $). This follows from the
lower bound in Theorem 1.1 by the substitution y=b&1x. Indeed, take a
P # Mn(4) so that

|P$(1)|� 2
3 \ :

n

j=0

*j+ &P&[0, 1] .

Then Q(x) :=P(x�b) satisfies

&Q$&[a, b]�|Q$(b)|=b&1 |P$(1)|�
2

3b \ :
n

j=0

*j+ &P&[0, 1]

�
2

3b \ :
n

j=0

*j+ &Q&[a,b] .
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The following example shows that the growth condition *j�$j with a
$>0 in the above theorem cannot be dropped. It will also be used in the
proof of Theorem 2.1.

Theorem 2.2. Let 4 :=(*j)
�
j=0 , where *j=$j. Let 0<a<b. Then

max
0{P # Mn(4)

|P$(a)|
&P&[a, b]

=|Q$n(a)|=
2$a$&1

b$&a$ n2

where, with Tn(x)=cos(n arccos x),

Qn(x) :=Tn \ 2x$

b$&a$&
b$+a$

b$&a$+
is the Chebyshev ``polynomial '' for Mn(4) on [a, b]. In particular,

lim
$ � 0

max
0{P # Mn(4)

|P$(a)|
(�n

j=0 *j) &P&[a, b]

=�.

Theorem 2.2 is a well-known property of differentiable Chebyshev
spaces. See, for example, [5] or [1].

3. Lemmas

The following comparison theorem for Mu� ntz polynomials is proved in
[1, E.4 f of Section 3.3]. For the sake of completeness, in the next section
we outline a short proof suggested by Pinkus. This proof assumes
familarity with the basic properties of Chebyshev and Descartes systems.
All of these may be found in [5].

Lemma 3.1 (A Comparison Theorem). Let 4 :=(*j)
�
j=0 and 1 :=(#j)

�
j=0

be increasing sequences of nonnegative real numbers with *0=#0=0, and
#j�*j for each j. Let 0<a<b. Then

max
P # Mn(1 )

|P$(a)|
&P&[a, b]

� max
P # Mn(4)

|P$(a)|
&P&[a, b]

.

The following result is essentially proved by Saff and Varga [7]. They
assume that 4 :=(*j)

�
j=0 is an increasing sequence of nonnegative integers

and $=1 in the next lemma, however, this assumption can be easily drop-
ped from their theorem, see [1, E.9 of Section 6.1]. In fact, their proof
remains valid almost word by word; the modifications are straightforward.
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Lemma 3.2 (The interval where the norm of a Mu� ntz polynomial
lives). Let 4 :=(*j)

�
j=0 be an increasing sequence of nonnegative real

numbers. Let 0{P # Mn(4) and Q(x) :=xk$P(x), where k is a nonnegative
integer and $ is a positive real number. Let ! # [0, 1] be a point so that
|Q(!)|=&Q&[0, 1] . Suppose *j�$j for each j. Then

\ k
k+n+

2�$

�!.

The above result is sharp in a certain limiting sense which is described
in detail in Saff and Varga [7].

4. Proofs

Proof of Lemma 3.1. It can be proved by a standard perturbation
argument (see, for example, [5]) that

sup
0{P # Mn(4)

|P$(a)|
&P&[a, b]

=
|T $n(a)|

&Tn&[a, b]

where Tn is the Chebyshev polynomial for the Chebyshev space Mn(4). In
particular, Tn has n distinct zeros in (a, b) and

|Tn(a)|=|Tn(b)|=&Tn&[a, b]=1.

Let

Tn(x)=: :
n

j=0

cj x*j, cj # R.

Since

T $n(x)= :
n

j=1

cj*jx*j&1

and since

(x_0, x_1, ..., x_n)

is a Descartes system on [a, b] for any choice of _0< } } } <_n , it follows
that T $n has exactly n&1 zeros in [a, b], and thus if we normalize Tn so
that T $n(a)>0, then Tn(a)<0. Under this normalization,

cj (&1) j+1>0, j=0, 1, ..., n.
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Now let k # [1, 2, ..., n] be fixed. Let (#j)
n
j=0 be such that

0=#0<#1< } } } <#n , #j=*j , j{k, and *k&1<#k<*k .

To prove the lemma it is sufficient to study the above case since the general
case follows from this by a finite number of pairwise comparisons.

Choose Qn # Mn(1 ) of the form

Qn(x)= :
n

j=0

dj x#j, dj # R

so that

Qn(ti)=Tn(ti), i=0, 1, ..., n

where t0 :=a and t1<t2< } } } <tn are the n zeros of Tn in (a, b). By the
unique interpolation property of Chebyshev spaces, Qn is uniquely deter-
mined, has n zeros (the points t1 , t2 , ..., tn), and is negative at a. (Thus
(&1) j+1 dj>0 for each j=0, 1, ..., n.)

We have

(Tn&Qn)(x)= :
n

j=0, j{k

(cj&dj) x*j+ck x*k&dk x#k.

The function Tn&Qn changes sign on (0, �) strictly at the points ti , i=
0, 1, ..., n, and has no other zeros. By Descartes' rule of sign,

c0&d0 , c1&d1 , ..., ck&1&dk&1 , &dk , ck , ck+1&dk+1 , ..., cn&dn

strictly alternates in sign. Since (&1)k+1 ck>0, this implies that

(&1)n+1 (Tn&Qn)(x)>0 for x>tn .

Thus for x # (tj&1 , tj) we have

(&1) j Tn(x)>(&1) j Qn(x)>0.

In addition, we recall that Qn(a)=Tn(a)<0.
The observations above imply that

&Qn&[a, b]�&Tn&[a, b]=1 and Q$n(a)�T $n(a)>0.

Thus

|Q$n(a)|
&Qn&[a, b]

�
|T $n(a)|

&Tn&[a,b]

= sup
0{P # Mn(4)

|P$(a)|
&P&[a,b]

.

The desired conclusion follows from this. K
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Proof of Theorem 2.1. Let P # Mn(4). We want to estimate |P$( y)| for
every y # [a, b]. First let y # [ 1

2 (a+b), b]. We define Q(x) :=xmn$P(x),
where m is the smallest positive integer satisfying

a�
a+b

2 \ m
m+1+

2�$

.

Scaling Newman's Inequality from [0, 1] to [0, y], then using Lemma 3.2,
we obtain

|Q$( y)|�
9
y

:
n

j=0

(*j+mn$) &Q&[0, y]

=
9
y

:
n

j=0

(*j+mn$) &Q&[ y(m�(m+1))2�$, y]

�c1(a, b, $) \ :
n

j=0

*j+ &Q&[a, y]

with a constant c1(a, b, $) depending only on a, b, and $. Hence

|P$( y)|�|Q$( y) y&mn$|+
mn$

y
|P( y)|

� y&mn$c1(a, b, $) \ :
n

j=0

*j+ &Q&[a, y]+
mn$

y
&P&[a, y]

�c2(a, b, $) \ :
n

j=0

*j+ &P&[a, y]

�c2(a, b, $) \ :
n

j=0

*j+ &P&[a, b]

with a constant c2(a, b, $) depending only on a, b, and $.
Now let y # [a, 1

2 (a+b)]. Then, by Lemma 3.1 and Theorem 2.2, we can
deduce that

|P$( y)|�
2$y$&1

b$& y$ n2 &P&[ y, b]

�c3(a, b, $)n2 &P&[ y, b]

�c4(a, b, $) \ :
n

j=0

*j+ &P&[ y, b]

with constants c3(a, b, $) and c4(a, b, $) depending only on a, b, and $. This
finishes the proof. K
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